
Numerical Solutions of Boundary-Value Problems in ODEs

Numerical Solutions of Boundary-Value Problems in ODEs

Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis

November 27, 2017

Northridge

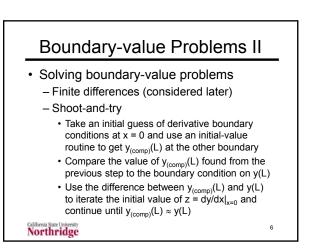
Stiff Systems of Equations

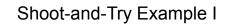
- · Some problems have multiple exponential terms with differing coefficients, a, in exp(-at)
- · Coefficients with large values of a will require a small time step for stability, but will not be essentially zero after a short time after the start of the solution
- · Need special algorithms for such systems

Northridge

Solving Stiff ODEs If you try to solve a stiff problem with a conventional solver you will find that the solution is taking excessive time · Stiff solvers do more work per step, but allow larger steps

- Gear's Method and MATLAB stiff solvers ode15s, ode23s, ode23t, ode23tb
- · Users may have to provide code to complete Jacobian matrix, $\partial f_i / \partial y_i$

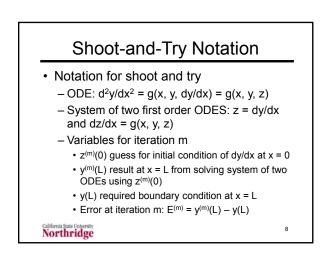

Northridge

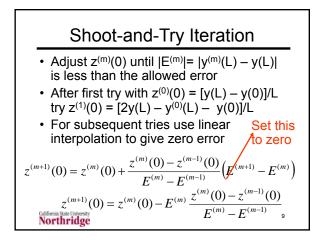

3

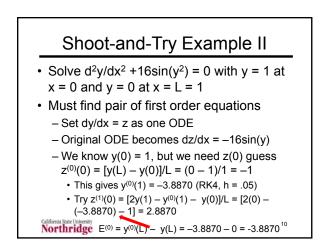
5

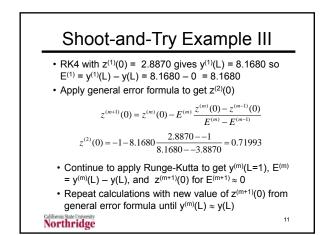
Boundary-Value Problems

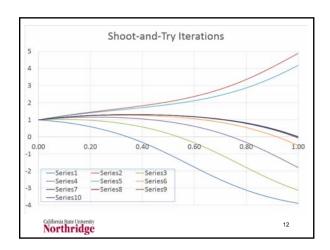
- All ODEs solved so far have initial conditions only
 - Conditions for all variables and derivatives set at t = 0 only
- · In a boundary-value problem, we have conditions set at two different locations
- A second-order ODE $d^2y/dx^2 = g(x, y, y)$ y'), needs two boundary conditions (BC) - Simplest are y(0) = a and y(L) = b
- -Mixed BC: ady/dx+by = c at x = 0, L Northridge

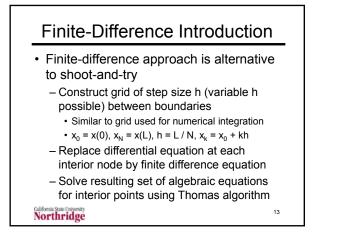


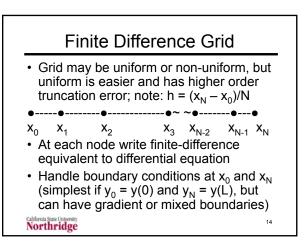

- Look at single, second order equation:
 y" = g(x, y, y'), y(0) = a and y(L) = b
- Define z = y' (y" = z') to get two first order equations: z' = g(x, y, z) and y' = z
- Steps in the shoot and try method

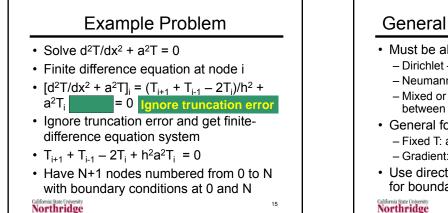

 Guess initial condition for z(0) = y'(0); typically guess z⁽⁰⁾(0) = [y(L) - y(0)]/L
 - Solve equations for y_{computed}(L) and compare to specified boundary condition, y(L)

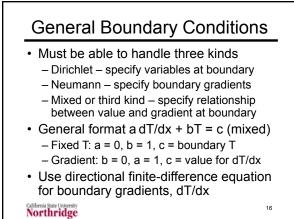

7

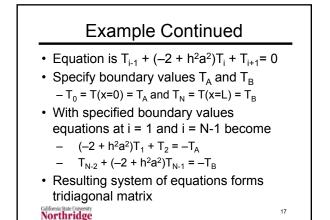

California State University Northridge

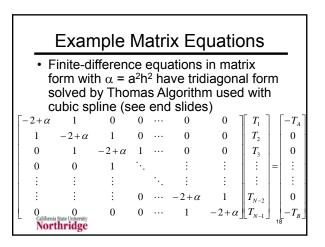


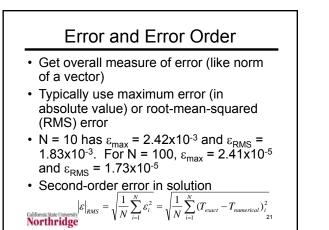


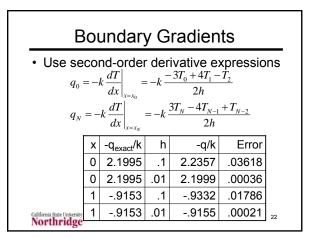


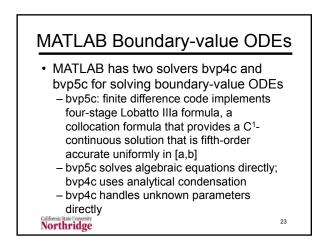


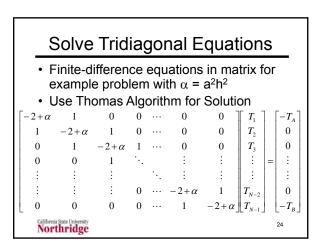




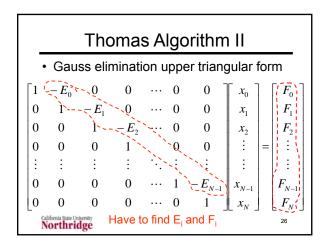


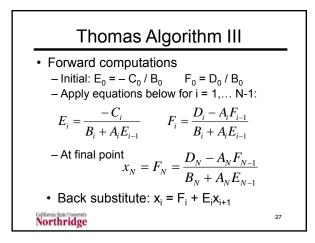


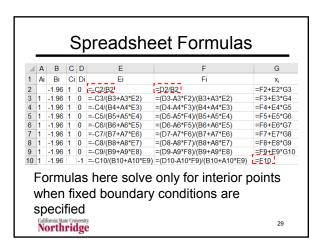

Numerical Solutions of Boundary-Value Problems in ODEs

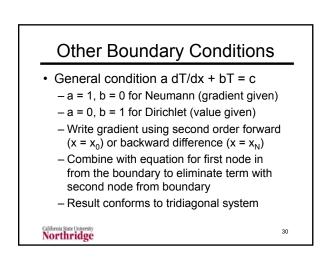

Analytical Solution Comparison • Look at results for h = 0.1 (N = 10) with $T_A = 0$, $T_B = 1$, a = 2 and L = 1• Compare to exact solution below – Exact gradients also used in comparison $T = \frac{T_B - T_A \cos(aL)}{\sin(aL)} \sin(ax) + T_A \cos(ax)$ $q_{x=0} = -k \frac{dT}{dx}\Big|_{x=0} = -ka \frac{T_B - T_A \cos(aL)}{\sin(aL)}$ Cultered Sectores $q_{x=L} = -k \frac{dT}{dx}\Big|_{x=L} = \frac{ka[T_A - T_B \cos(aL)]}{\sin(aL)}$ 19

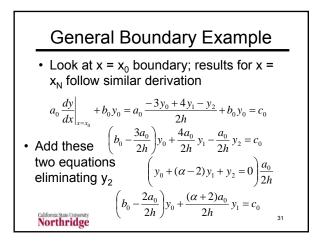
Results of Finite-Difference Calculations							
i	x _i	Ti	T _i Exact T _i				
0	0.0	0	0	0			
1	0.1	0.21918	0.21849	0.00070			
2	0.2	0.42960	0.42826	0.00134			
3	0.3	0.62284	0.62097	0.00187			
4	0.4	0.79115	0.78891	0.00224			
5	0.5	0.92783	0.92541	0.00242			
6	0.6	1.02739	1.02501	0.00238			
7	0.7	1.08585	1.08375	0.00211			
8	0.8	1.10088	1.09928	0.00160			
9	0.9	1.07188	1.07099	0.00089			
10	1.0	1	1	0			

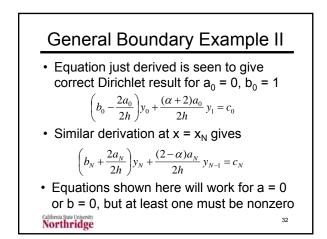


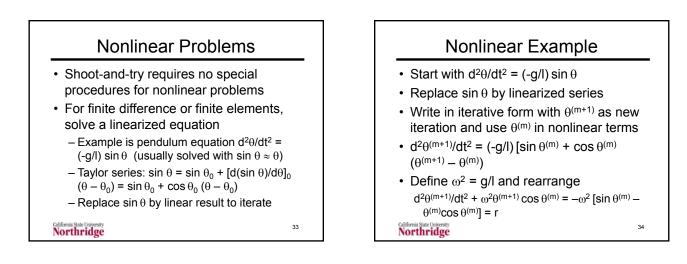


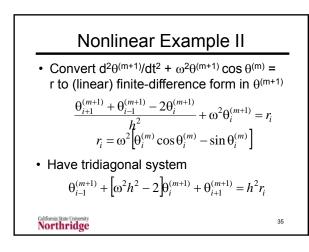


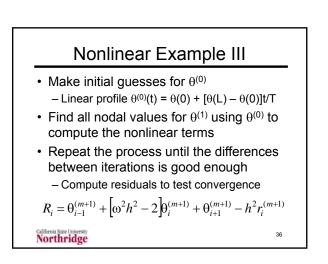

	Thomas Algorithm									
•	General set of tridiagonal equations									
$\int B$	B ₀	C_0	0	0		0	0	$\begin{bmatrix} x_0 \end{bmatrix}$		$\begin{bmatrix} D_0 \end{bmatrix}$
A	1 1	B_1	C_1	0		0	0	<i>x</i> ₁		D_1
)	A_2	B_2	C_2		0	0	x ₂		D_2
0)	0	A_3	B_3		0	0	:	=	:
		÷	÷	÷	•.	÷	÷	:		:
0)	0	0	0		B_{N-1}	C_{N-1}	x_{N-1}		D_{N-1}
)	0	0	0		A_N	B_N	$\begin{bmatrix} x_N \end{bmatrix}$		D_N
Ň	California State University 25									

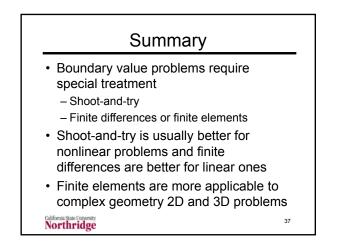





R	Result: h = .1, a = 2, T ₀ = 0, T _N = 1							
xi	Ai	Bi	Ci	Di	Ei	Fi	y i	
0.1	1	-1.96	1	0	0.51020	0	0.21918	
0.2	1	-1.96	1	0	0.68975	0	0.42960	
0.3	1	-1.96	1	0	0.78725	0	0.62284	
0.4	1	-1.96	1	0	0.85270	0	0.79115	
0.5	1	-1.96	1	0	0.90309	0	0.92783	
0.6	1	-1.96	1	0	0.94616	0	1.02739	
0.7	1	-1.96	1	0	0.98635	0	1.08585	
0.8	1	-1.96	1	0	1.02706	0	1.10088	
0.9	1	-1.96	1	-1		1.07188	1.07188	
۵N	California State University Input				Forward Back Calculations substitute ²⁸			







Numerical Solutions of Boundary-Value Problems in ODEs

