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Outline
• Review stiff equation systems
• Definition of boundary-value problems 

(BVPs) in ODEs
• Numerical solution of BVPs by shoot-

and-try method
• Use of finite-difference equations to 

solve BVPs
– Thomas algorithms for solving finite-

difference equations from second-order 
BVPs

Stiff Systems of Equations

• Some problems have multiple 
exponential terms with differing 
coefficients, a, in exp(-at)

• Coefficients with large values of a will 
require a small time step for stability, but 
will not be essentially zero after a short 
time after the start of the solution

• Need special algorithms for such 
systems
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Solving Stiff ODEs

• If you try to solve a stiff problem with a 
conventional solver you will find that the 
solution is taking excessive time

• Stiff solvers do more work per step, but 
allow larger steps
– Gear’s Method and MATLAB stiff solvers 

ode15s, ode23s, ode23t, ode23tb

• Users may have to provide code to 
complete Jacobian matrix, ߲ ௜݂ ⁄௝ݕ߲
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Boundary-Value Problems
• All ODEs solved so far have initial 

conditions only
– Conditions for all variables and derivatives 

set at t = 0 only

• In a boundary-value problem, we have 
conditions set at two different locations

• A second-order ODE d2y/dx2 = g(x, y, 
y’), needs two boundary conditions (BC)
– Simplest are y(0) = a and y(L) = b

– Mixed BC: ady/dx+by = c at x = 0, L
5

Boundary-value Problems II

• Solving boundary-value problems
– Finite differences (considered later)

– Shoot-and-try
• Take an initial guess of derivative boundary 

conditions at x = 0 and use an initial-value 
routine to get y(comp)(L) at the other boundary

• Compare the value of y(comp)(L) found from the 
previous step to the boundary condition on y(L)

• Use the difference between y(comp)(L) and y(L) 
to iterate the initial value of z = dy/dx|x=0 and 
continue until y(comp)(L)  y(L)
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Shoot-and-Try Example I

• Look at single, second order equation: 
y’’ = g(x, y, y’), y(0) = a and y(L) = b

• Define z = y’ (y’’ = z’) to get two first 
order equations: z’ = g(x, y, z) and y’ = z

• Steps in the shoot and try method
– Guess initial condition for z(0) = y’(0); 

typically guess z(0)(0) = [y(L) – y(0)]/L 

– Solve equations for ycomputed(L) and com-
pare to specified boundary condition, y(L)

Shoot-and-Try Notation

• Notation for shoot and try
– ODE: d2y/dx2 = g(x, y, dy/dx) = g(x, y, z)

– System of two first order ODES: z = dy/dx 
and dz/dx = g(x, y, z)

– Variables for iteration m
• z(m)(0) guess for initial condition of dy/dx at x = 0

• y(m)(L) result at x = L from solving system of two 
ODEs using z(m)(0)

• y(L) required boundary condition at x = L

• Error at iteration m: E(m) = y(m)(L) – y(L)

8

9

Shoot-and-Try Iteration
• Adjust z(m)(0) until |E(m)|= |y(m)(L) – y(L)|  

is less than the allowed error
• After first try with z(0)(0) = [y(L) – y(0)]/L 

try z(1)(0) = [2y(L) – y(0)(L) – y(0)]/L 
• For subsequent tries use linear 

interpolation to give zero error
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Shoot-and-Try Example II

• Solve d2y/dx2 +16sin(y2) = 0 with y = 1 at 
x = 0 and y = 0 at x = L = 1

• Must find pair of first order equations
– Set dy/dx = z as one ODE

– Original ODE becomes dz/dx = –16sin(y)

– We know y(0) = 1, but we need z(0) guess 
z(0)(0) = [y(L) – y(0)]/L = (0 – 1)/1 = –1 

• This gives y(0)(1) = –3.8870 (RK4, h = .05)

• Try z(1)(0) = [2y(1) – y(0)(1) – y(0)]/L = [2(0) –
(–3.8870) – 1] = 2.8870
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E(0) = y(0)(L) – y(L) = –3.8870 – 0 = -3.8870

Shoot-and-Try Example III
• RK4 with z(1)(0) =  2.8870 gives y(1)(L) = 8.1680 so 

E(1) = y(1)(L) – y(L) = 8.1680 – 0  = 8.1680

• Apply general error formula to get z(2)(0) 
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• Continue to apply Runge-Kutta to get y(m)(L=1), E(m)

= y(m)(L) – y(L), and  z(m+1)(0) for E(m+1)  0

• Repeat calculations with new value of z(m+1)(0) from 
general error formula until y(m)(L)  y(L)
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Finite-Difference Introduction

• Finite-difference approach is alternative 
to shoot-and-try
– Construct grid of step size h (variable h 

possible) between boundaries
• Similar to grid used for numerical integration

• x0 = x(0), xN = x(L), h = L / N, xk = x0 + kh

– Replace differential equation at each 
interior node by finite difference equation

– Solve resulting set of algebraic equations 
for interior points using Thomas algorithm
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Finite Difference Grid
• Grid may be uniform or non-uniform, but 

uniform is easier and has higher order 
truncation error; note: h = (xN – x0)/N

●-----●--------●-------------●~ ~●-------●---●
x0 x1 x2 x3 xN-2 xN-1 xN

• At each node write finite-difference 
equivalent to differential equation

• Handle boundary conditions at x0 and xN
(simplest if y0 = y(0) and yN = y(L), but 
can have gradient or mixed boundaries)
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Example Problem

• Solve d2T/dx2 + a2T = 0 

• Finite difference equation at node i

• [d2T/dx2 + a2T]i = (Ti+1 + Ti-1 – 2Ti)/h2 + 
a2Ti + O(h2) = 0

• Ignore truncation error and get finite-
difference equation system

• Ti+1 + Ti-1 – 2Ti + h2a2Ti = 0

• Have N+1 nodes numbered from 0 to N 
with boundary conditions at 0 and N

Ignore truncation error
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General Boundary Conditions
• Must be able to handle three kinds

– Dirichlet – specify variables at boundary
– Neumann – specify boundary gradients 
– Mixed or third kind – specify relationship 

between value and gradient at boundary

• General format a dT/dx + bT = c (mixed)
– Fixed T: a = 0, b = 1, c = boundary T
– Gradient: b = 0, a = 1, c = value for dT/dx

• Use directional finite-difference equation 
for boundary gradients, dT/dx
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Example Continued

• Equation is Ti-1 + (–2 + h2a2)Ti + Ti+1= 0

• Specify boundary values TA and TB

– T0 = T(x=0) = TA and TN = T(x=L) = TB

• With specified boundary values 
equations at i = 1 and i = N-1 become
– (–2 + h2a2)T1 + T2 = –TA

– TN-2 + (–2 + h2a2)TN-1 = –TB

• Resulting system of equations forms 
tridiagonal matrix

18

Example Matrix Equations
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• Finite-difference equations in matrix 
form with  = a2h2 have tridiagonal form 
solved by Thomas Algorithm used with 
cubic spline (see end slides)
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Analytical Solution Comparison
• Look at results for h = 0.1 (N = 10) with 

TA = 0, TB = 1, a = 2 and L = 1
• Compare to exact solution below

– Exact gradients also used in comparison
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Results of Finite-Difference Calculations

i xi Ti Exact Ti Error

0 0.0 0 0 0

1 0.1 0.21918 0.21849 0.00070

2 0.2 0.42960 0.42826 0.00134

3 0.3 0.62284 0.62097 0.00187

4 0.4 0.79115 0.78891 0.00224

5 0.5 0.92783 0.92541 0.00242

6 0.6 1.02739 1.02501 0.00238

7 0.7 1.08585 1.08375 0.00211

8 0.8 1.10088 1.09928 0.00160

9 0.9 1.07188 1.07099 0.00089

10 1.0 1 1 0
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Error and Error Order
• Get overall measure of error (like norm 

of a vector)
• Typically use maximum error (in 

absolute value) or root-mean-squared 
(RMS) error

• N = 10 has max = 2.42x10-3 and RMS = 
1.83x10-3.  For N = 100, max = 2.41x10-5 

and RMS = 1.73x10-5

• Second-order error in solution
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Boundary Gradients
• Use second-order derivative expressions
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x -qexact/k h -q/k Error

0 2.1995 .1 2.2357 .03618

0 2.1995 .01 2.1999 .00036

1 -.9153 .1 -.9332 .01786

1 -.9153 .01 -.9155 .00021

MATLAB Boundary-value ODEs

• MATLAB has two solvers bvp4c and 
bvp5c for solving boundary-value ODEs
– bvp5c: finite difference code implements 

four-stage Lobatto IIIa formula, a 
collocation formula that provides a C1-
continuous solution that is fifth-order 
accurate uniformly in [a,b]

– bvp5c solves algebraic equations directly; 
bvp4c uses analytical condensation

– bvp4c handles unknown parameters 
directly
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Solve Tridiagonal Equations







































































































B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1































• Finite-difference equations in matrix for 
example problem with  = a2h2

• Use Thomas Algorithm for Solution
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Thomas Algorithm
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• General set of tridiagonal equations
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Thomas Algorithm II
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• Gauss elimination upper triangular form

Have to find Ei and Fi
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Thomas Algorithm III
• Forward computations

– Initial: E0 = – C0 / B0 F0 = D0 / B0

– Apply equations below for i = 1,… N-1: 

– At final point
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• Back substitute: xi = Fi + Eixi+1
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Result: h = .1, a = 2, T0 = 0, TN = 1

Input Forward 
Calculations

Back 
substitute

Spreadsheet Formulas

29

Formulas here solve only for interior points  
when fixed boundary conditions are 
specified
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Other Boundary Conditions

• General condition a dT/dx + bT = c
– a = 1, b = 0 for Neumann (gradient given)

– a = 0, b = 1 for Dirichlet (value given)

– Write gradient using second order forward 
(x = x0) or backward difference (x = xN)

– Combine with equation for first node in 
from the boundary to eliminate term with 
second node from boundary

– Result conforms to tridiagonal system
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General Boundary Example

• Look at x = x0 boundary; results for x = 
xN follow similar derivation
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• Add these 
two equations 
eliminating y2
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General Boundary Example II

• Equation just derived is seen to give 
correct Dirichlet result for a0 = 0, b0 = 1
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• Similar derivation at x = xN gives
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• Equations shown here will work for a = 0 
or b = 0, but at least one must be nonzero

33

Nonlinear Problems

• Shoot-and-try requires no special 
procedures for nonlinear problems

• For finite difference or finite elements, 
solve a linearized equation
– Example is pendulum equation d2/dt2 =   

(-g/l) sin  (usually solved with sin   )

– Taylor series: sin  = sin 0 + [d(sin )/d]0
( – 0) = sin 0 + cos 0 ( – 0)

– Replace sin  by linear result to iterate
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Nonlinear Example

• Start with d2/dt2 = (-g/l) sin 
• Replace sin  by linearized series

• Write in iterative form with (m+1) as new 
iteration and use (m) in nonlinear terms

• d2(m+1)/dt2 = (-g/l) [sin (m) + cos (m)

((m+1) – (m))

• Define 2 = g/l and rearrange
d2(m+1)/dt2 + 2(m+1) cos (m) = –2 [sin (m) –
(m)cos (m)] = r
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Nonlinear Example II

• Convert d2(m+1)/dt2 + 2(m+1) cos (m) = 
r to (linear) finite-difference form in (m+1)
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Nonlinear Example III

• Make initial guesses for (0)

– Linear profile (0)(t) = (0) + [(L) – (0)]t/T

• Find all nodal values for (1) using (0) to 
compute the nonlinear terms

• Repeat the process until the differences 
between iterations is good enough
– Compute residuals to test convergence
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Summary

• Boundary value problems require 
special treatment
– Shoot-and-try

– Finite differences or finite elements

• Shoot-and-try is usually better for 
nonlinear problems and finite 
differences are better for linear ones

• Finite elements are more applicable to 
complex geometry 2D and 3D problems


