
Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Numerical Solutions of Boundary-
Value Problems in ODEs

Larry Caretto

Mechanical Engineering 501A

Seminar in Engineering Analysis

November 27, 2017

2

Outline
• Review stiff equation systems
• Definition of boundary-value problems

(BVPs) in ODEs
• Numerical solution of BVPs by shoot-

and-try method
• Use of finite-difference equations to

solve BVPs
– Thomas algorithms for solving finite-

difference equations from second-order
BVPs

Stiff Systems of Equations

• Some problems have multiple
exponential terms with differing
coefficients, a, in exp(-at)

• Coefficients with large values of a will
require a small time step for stability, but
will not be essentially zero after a short
time after the start of the solution

• Need special algorithms for such
systems

3

Solving Stiff ODEs

• If you try to solve a stiff problem with a
conventional solver you will find that the
solution is taking excessive time

• Stiff solvers do more work per step, but
allow larger steps
– Gear’s Method and MATLAB stiff solvers

ode15s, ode23s, ode23t, ode23tb

• Users may have to provide code to
complete Jacobian matrix, ߲ ௜݂ ⁄௝ݕ߲

4

Boundary-Value Problems
• All ODEs solved so far have initial

conditions only
– Conditions for all variables and derivatives

set at t = 0 only

• In a boundary-value problem, we have
conditions set at two different locations

• A second-order ODE d2y/dx2 = g(x, y,
y’), needs two boundary conditions (BC)
– Simplest are y(0) = a and y(L) = b

– Mixed BC: ady/dx+by = c at x = 0, L
5

Boundary-value Problems II

• Solving boundary-value problems
– Finite differences (considered later)

– Shoot-and-try
• Take an initial guess of derivative boundary

conditions at x = 0 and use an initial-value
routine to get y(comp)(L) at the other boundary

• Compare the value of y(comp)(L) found from the
previous step to the boundary condition on y(L)

• Use the difference between y(comp)(L) and y(L)
to iterate the initial value of z = dy/dx|x=0 and
continue until y(comp)(L)  y(L)

6

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 2

7

Shoot-and-Try Example I

• Look at single, second order equation:
y’’ = g(x, y, y’), y(0) = a and y(L) = b

• Define z = y’ (y’’ = z’) to get two first
order equations: z’ = g(x, y, z) and y’ = z

• Steps in the shoot and try method
– Guess initial condition for z(0) = y’(0);

typically guess z(0)(0) = [y(L) – y(0)]/L

– Solve equations for ycomputed(L) and com-
pare to specified boundary condition, y(L)

Shoot-and-Try Notation

• Notation for shoot and try
– ODE: d2y/dx2 = g(x, y, dy/dx) = g(x, y, z)

– System of two first order ODES: z = dy/dx
and dz/dx = g(x, y, z)

– Variables for iteration m
• z(m)(0) guess for initial condition of dy/dx at x = 0

• y(m)(L) result at x = L from solving system of two
ODEs using z(m)(0)

• y(L) required boundary condition at x = L

• Error at iteration m: E(m) = y(m)(L) – y(L)

8

9

Shoot-and-Try Iteration
• Adjust z(m)(0) until |E(m)|= |y(m)(L) – y(L)|

is less than the allowed error
• After first try with z(0)(0) = [y(L) – y(0)]/L

try z(1)(0) = [2y(L) – y(0)(L) – y(0)]/L
• For subsequent tries use linear

interpolation to give zero error

 )()1(
)1()(

)1()(
)()1()0()0(

)0()0(mm
mm

mm
mm EE

EE

zz
zz 




 





Set this
to zero

)1()(

)1()(
)()()1()0()0(

)0()0(








mm

mm
mmm

EE

zz
Ezz

Shoot-and-Try Example II

• Solve d2y/dx2 +16sin(y2) = 0 with y = 1 at
x = 0 and y = 0 at x = L = 1

• Must find pair of first order equations
– Set dy/dx = z as one ODE

– Original ODE becomes dz/dx = –16sin(y)

– We know y(0) = 1, but we need z(0) guess
z(0)(0) = [y(L) – y(0)]/L = (0 – 1)/1 = –1

• This gives y(0)(1) = –3.8870 (RK4, h = .05)

• Try z(1)(0) = [2y(1) – y(0)(1) – y(0)]/L = [2(0) –
(–3.8870) – 1] = 2.8870

10
E(0) = y(0)(L) – y(L) = –3.8870 – 0 = -3.8870

Shoot-and-Try Example III
• RK4 with z(1)(0) = 2.8870 gives y(1)(L) = 8.1680 so

E(1) = y(1)(L) – y(L) = 8.1680 – 0 = 8.1680

• Apply general error formula to get z(2)(0)

11

)1()(

)1()(
)()()1()0()0(

)0()0(








mm

mm
mmm

EE

zz
Ezz

71993.0
8870.31680.8

18870.2
1680.81)0()2(




z

• Continue to apply Runge-Kutta to get y(m)(L=1), E(m)

= y(m)(L) – y(L), and z(m+1)(0) for E(m+1)  0

• Repeat calculations with new value of z(m+1)(0) from
general error formula until y(m)(L)  y(L)

12

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 3

Finite-Difference Introduction

• Finite-difference approach is alternative
to shoot-and-try
– Construct grid of step size h (variable h

possible) between boundaries
• Similar to grid used for numerical integration

• x0 = x(0), xN = x(L), h = L / N, xk = x0 + kh

– Replace differential equation at each
interior node by finite difference equation

– Solve resulting set of algebraic equations
for interior points using Thomas algorithm

13 14

Finite Difference Grid
• Grid may be uniform or non-uniform, but

uniform is easier and has higher order
truncation error; note: h = (xN – x0)/N

●-----●--------●-------------●~ ~●-------●---●
x0 x1 x2 x3 xN-2 xN-1 xN

• At each node write finite-difference
equivalent to differential equation

• Handle boundary conditions at x0 and xN
(simplest if y0 = y(0) and yN = y(L), but
can have gradient or mixed boundaries)

15

Example Problem

• Solve d2T/dx2 + a2T = 0

• Finite difference equation at node i

• [d2T/dx2 + a2T]i = (Ti+1 + Ti-1 – 2Ti)/h2 +
a2Ti + O(h2) = 0

• Ignore truncation error and get finite-
difference equation system

• Ti+1 + Ti-1 – 2Ti + h2a2Ti = 0

• Have N+1 nodes numbered from 0 to N
with boundary conditions at 0 and N

Ignore truncation error

16

General Boundary Conditions
• Must be able to handle three kinds

– Dirichlet – specify variables at boundary
– Neumann – specify boundary gradients
– Mixed or third kind – specify relationship

between value and gradient at boundary

• General format a dT/dx + bT = c (mixed)
– Fixed T: a = 0, b = 1, c = boundary T
– Gradient: b = 0, a = 1, c = value for dT/dx

• Use directional finite-difference equation
for boundary gradients, dT/dx

17

Example Continued

• Equation is Ti-1 + (–2 + h2a2)Ti + Ti+1= 0

• Specify boundary values TA and TB

– T0 = T(x=0) = TA and TN = T(x=L) = TB

• With specified boundary values
equations at i = 1 and i = N-1 become
– (–2 + h2a2)T1 + T2 = –TA

– TN-2 + (–2 + h2a2)TN-1 = –TB

• Resulting system of equations forms
tridiagonal matrix

18

Example Matrix Equations







































































































B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1































• Finite-difference equations in matrix
form with  = a2h2 have tridiagonal form
solved by Thomas Algorithm used with
cubic spline (see end slides)

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Analytical Solution Comparison
• Look at results for h = 0.1 (N = 10) with

TA = 0, TB = 1, a = 2 and L = 1
• Compare to exact solution below

– Exact gradients also used in comparison

)cos()sin(
)sin(

)cos(
axTax

aL

aLTT
T A

AB 




)sin(

)cos(

0
0 aL

aLTT
ka

dx

dT
kq AB

x
x







 
)sin(

)cos(

aL

aLTTka

dx

dT
kq BA

Lx
Lx







Results of Finite-Difference Calculations

i xi Ti Exact Ti Error

0 0.0 0 0 0

1 0.1 0.21918 0.21849 0.00070

2 0.2 0.42960 0.42826 0.00134

3 0.3 0.62284 0.62097 0.00187

4 0.4 0.79115 0.78891 0.00224

5 0.5 0.92783 0.92541 0.00242

6 0.6 1.02739 1.02501 0.00238

7 0.7 1.08585 1.08375 0.00211

8 0.8 1.10088 1.09928 0.00160

9 0.9 1.07188 1.07099 0.00089

10 1.0 1 1 0

21

Error and Error Order
• Get overall measure of error (like norm

of a vector)
• Typically use maximum error (in

absolute value) or root-mean-squared
(RMS) error

• N = 10 has max = 2.42x10-3 and RMS =
1.83x10-3. For N = 100, max = 2.41x10-5

and RMS = 1.73x10-5

• Second-order error in solution





N

i
inumericalexact

N

i
iRMS

TT
NN 1

2

1

2)(
11 

22

Boundary Gradients
• Use second-order derivative expressions

h

TTT
k

dx

dT
kq

xx 2

43 210
0

0






h

TTT
k

dx

dT
kq NNN

xx
N

N
2

43 21 






x -qexact/k h -q/k Error

0 2.1995 .1 2.2357 .03618

0 2.1995 .01 2.1999 .00036

1 -.9153 .1 -.9332 .01786

1 -.9153 .01 -.9155 .00021

MATLAB Boundary-value ODEs

• MATLAB has two solvers bvp4c and
bvp5c for solving boundary-value ODEs
– bvp5c: finite difference code implements

four-stage Lobatto IIIa formula, a
collocation formula that provides a C1-
continuous solution that is fifth-order
accurate uniformly in [a,b]

– bvp5c solves algebraic equations directly;
bvp4c uses analytical condensation

– bvp4c handles unknown parameters
directly

23 24

Solve Tridiagonal Equations







































































































B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1































• Finite-difference equations in matrix for
example problem with  = a2h2

• Use Thomas Algorithm for Solution

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 5

25

Thomas Algorithm

























































































N

N

N

N

NN

NN

D

D

D

D

D

x

x

x

x

x

BA

CB

BA

CBA

CBA

CB

1

2

1

0

1

2

1

0

11

33

222

111

00

0000

0000

0000

000

000

0000





















• General set of tridiagonal equations

26

Thomas Algorithm II
































































































N

N

N

NN

F

F

F

F

F

x

x

x

x

x

E

E

E

E

1

2

1

0

1

2

1

0

1

2

1

0

100000

10000

001000

00100

00010

00001





















• Gauss elimination upper triangular form

Have to find Ei and Fi

27

Thomas Algorithm III
• Forward computations

– Initial: E0 = – C0 / B0 F0 = D0 / B0

– Apply equations below for i = 1,… N-1:

– At final point

1

1

1 



 







iii

iii
i

iii

i
i EAB

FAD
F

EAB

C
E

1

1









NNN

NNN
NN EAB

FAD
Fx

• Back substitute: xi = Fi + Eixi+1

28

Result: h = .1, a = 2, T0 = 0, TN = 1

Input Forward
Calculations

Back
substitute

Spreadsheet Formulas

29

Formulas here solve only for interior points
when fixed boundary conditions are
specified

30

Other Boundary Conditions

• General condition a dT/dx + bT = c
– a = 1, b = 0 for Neumann (gradient given)

– a = 0, b = 1 for Dirichlet (value given)

– Write gradient using second order forward
(x = x0) or backward difference (x = xN)

– Combine with equation for first node in
from the boundary to eliminate term with
second node from boundary

– Result conforms to tridiagonal system

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

General Boundary Example

• Look at x = x0 boundary; results for x =
xN follow similar derivation

000
210

0000 2

43

0

cyb
h

yyy
ayb

dx

dy
a

xx







02
0

1
0

0
0

0 22

4

2

3
cy

h

a
y

h

a
y

h

a
b 






 

h

a
yyy

2
0)2(0

210 







 

• Add these
two equations
eliminating y2

01
0

0
0

0 2

)2(

2

2
cy

h

a
y

h

a
b 









 



32

General Boundary Example II

• Equation just derived is seen to give
correct Dirichlet result for a0 = 0, b0 = 1

NN
N

N
N

N cy
h

a
y

h

a
b 









  12

)2(

2

2 

• Similar derivation at x = xN gives

01
0

0
0

0 2

)2(

2

2
cy

h

a
y

h

a
b 









 



• Equations shown here will work for a = 0
or b = 0, but at least one must be nonzero

33

Nonlinear Problems

• Shoot-and-try requires no special
procedures for nonlinear problems

• For finite difference or finite elements,
solve a linearized equation
– Example is pendulum equation d2/dt2 =

(-g/l) sin  (usually solved with sin   )

– Taylor series: sin  = sin 0 + [d(sin )/d]0
( – 0) = sin 0 + cos 0 ( – 0)

– Replace sin  by linear result to iterate

34

Nonlinear Example

• Start with d2/dt2 = (-g/l) sin 
• Replace sin  by linearized series

• Write in iterative form with (m+1) as new
iteration and use (m) in nonlinear terms

• d2(m+1)/dt2 = (-g/l) [sin (m) + cos (m)

((m+1) – (m))

• Define 2 = g/l and rearrange
d2(m+1)/dt2 + 2(m+1) cos (m) = –2 [sin (m) –
(m)cos (m)] = r

35

Nonlinear Example II

• Convert d2(m+1)/dt2 + 2(m+1) cos (m) =
r to (linear) finite-difference form in (m+1)

 )()()(2

)1(2
2

)1()1(
1

)1(
1

sincos

2

m
i

m
i

m
ii

i
m

i

m
i

m
i

m
i

r

r
h




 







• Have tridiagonal system

  i
m

i
m

i
m

i rhh 2)1(
1

)1(22)1(
1 2  






36

Nonlinear Example III

• Make initial guesses for (0)

– Linear profile (0)(t) = (0) + [(L) – (0)]t/T

• Find all nodal values for (1) using (0) to
compute the nonlinear terms

• Repeat the process until the differences
between iterations is good enough
– Compute residuals to test convergence

 )1(2)1(
1

)1(22)1(
1 2 




  m
i

m
i

m
i

m
ii rhhR

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 7

37

Summary

• Boundary value problems require
special treatment
– Shoot-and-try

– Finite differences or finite elements

• Shoot-and-try is usually better for
nonlinear problems and finite
differences are better for linear ones

• Finite elements are more applicable to
complex geometry 2D and 3D problems

