
Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Numerical Solutions of Boundary-
Value Problems in ODEs

Larry Caretto

Mechanical Engineering 501A

Seminar in Engineering Analysis

November 27, 2017

2

Outline
• Review stiff equation systems
• Definition of boundary-value problems

(BVPs) in ODEs
• Numerical solution of BVPs by shoot-

and-try method
• Use of finite-difference equations to

solve BVPs
– Thomas algorithms for solving finite-

difference equations from second-order
BVPs

Stiff Systems of Equations

• Some problems have multiple
exponential terms with differing
coefficients, a, in exp(-at)

• Coefficients with large values of a will
require a small time step for stability, but
will not be essentially zero after a short
time after the start of the solution

• Need special algorithms for such
systems

3

Solving Stiff ODEs

• If you try to solve a stiff problem with a
conventional solver you will find that the
solution is taking excessive time

• Stiff solvers do more work per step, but
allow larger steps
– Gear’s Method and MATLAB stiff solvers

ode15s, ode23s, ode23t, ode23tb

• Users may have to provide code to
complete Jacobian matrix, ⁄

4

Boundary-Value Problems
• All ODEs solved so far have initial

conditions only
– Conditions for all variables and derivatives

set at t = 0 only

• In a boundary-value problem, we have
conditions set at two different locations

• A second-order ODE d2y/dx2 = g(x, y,
y’), needs two boundary conditions (BC)
– Simplest are y(0) = a and y(L) = b

– Mixed BC: ady/dx+by = c at x = 0, L
5

Boundary-value Problems II

• Solving boundary-value problems
– Finite differences (considered later)

– Shoot-and-try
• Take an initial guess of derivative boundary

conditions at x = 0 and use an initial-value
routine to get y(comp)(L) at the other boundary

• Compare the value of y(comp)(L) found from the
previous step to the boundary condition on y(L)

• Use the difference between y(comp)(L) and y(L)
to iterate the initial value of z = dy/dx|x=0 and
continue until y(comp)(L) y(L)

6

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 2

7

Shoot-and-Try Example I

• Look at single, second order equation:
y’’ = g(x, y, y’), y(0) = a and y(L) = b

• Define z = y’ (y’’ = z’) to get two first
order equations: z’ = g(x, y, z) and y’ = z

• Steps in the shoot and try method
– Guess initial condition for z(0) = y’(0);

typically guess z(0)(0) = [y(L) – y(0)]/L

– Solve equations for ycomputed(L) and com-
pare to specified boundary condition, y(L)

Shoot-and-Try Notation

• Notation for shoot and try
– ODE: d2y/dx2 = g(x, y, dy/dx) = g(x, y, z)

– System of two first order ODES: z = dy/dx
and dz/dx = g(x, y, z)

– Variables for iteration m
• z(m)(0) guess for initial condition of dy/dx at x = 0

• y(m)(L) result at x = L from solving system of two
ODEs using z(m)(0)

• y(L) required boundary condition at x = L

• Error at iteration m: E(m) = y(m)(L) – y(L)

8

9

Shoot-and-Try Iteration
• Adjust z(m)(0) until |E(m)|= |y(m)(L) – y(L)|

is less than the allowed error
• After first try with z(0)(0) = [y(L) – y(0)]/L

try z(1)(0) = [2y(L) – y(0)(L) – y(0)]/L
• For subsequent tries use linear

interpolation to give zero error

)()1(
)1()(

)1()(
)()1()0()0(

)0()0(mm
mm

mm
mm EE

EE

zz
zz

Set this
to zero

)1()(

)1()(
)()()1()0()0(

)0()0(

mm

mm
mmm

EE

zz
Ezz

Shoot-and-Try Example II

• Solve d2y/dx2 +16sin(y2) = 0 with y = 1 at
x = 0 and y = 0 at x = L = 1

• Must find pair of first order equations
– Set dy/dx = z as one ODE

– Original ODE becomes dz/dx = –16sin(y)

– We know y(0) = 1, but we need z(0) guess
z(0)(0) = [y(L) – y(0)]/L = (0 – 1)/1 = –1

• This gives y(0)(1) = –3.8870 (RK4, h = .05)

• Try z(1)(0) = [2y(1) – y(0)(1) – y(0)]/L = [2(0) –
(–3.8870) – 1] = 2.8870

10
E(0) = y(0)(L) – y(L) = –3.8870 – 0 = -3.8870

Shoot-and-Try Example III
• RK4 with z(1)(0) = 2.8870 gives y(1)(L) = 8.1680 so

E(1) = y(1)(L) – y(L) = 8.1680 – 0 = 8.1680

• Apply general error formula to get z(2)(0)

11

)1()(

)1()(
)()()1()0()0(

)0()0(

mm

mm
mmm

EE

zz
Ezz

71993.0
8870.31680.8

18870.2
1680.81)0()2(

z

• Continue to apply Runge-Kutta to get y(m)(L=1), E(m)

= y(m)(L) – y(L), and z(m+1)(0) for E(m+1) 0

• Repeat calculations with new value of z(m+1)(0) from
general error formula until y(m)(L) y(L)

12

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 3

Finite-Difference Introduction

• Finite-difference approach is alternative
to shoot-and-try
– Construct grid of step size h (variable h

possible) between boundaries
• Similar to grid used for numerical integration

• x0 = x(0), xN = x(L), h = L / N, xk = x0 + kh

– Replace differential equation at each
interior node by finite difference equation

– Solve resulting set of algebraic equations
for interior points using Thomas algorithm

13 14

Finite Difference Grid
• Grid may be uniform or non-uniform, but

uniform is easier and has higher order
truncation error; note: h = (xN – x0)/N

●-----●--------●-------------●~ ~●-------●---●
x0 x1 x2 x3 xN-2 xN-1 xN

• At each node write finite-difference
equivalent to differential equation

• Handle boundary conditions at x0 and xN
(simplest if y0 = y(0) and yN = y(L), but
can have gradient or mixed boundaries)

15

Example Problem

• Solve d2T/dx2 + a2T = 0

• Finite difference equation at node i

• [d2T/dx2 + a2T]i = (Ti+1 + Ti-1 – 2Ti)/h2 +
a2Ti + O(h2) = 0

• Ignore truncation error and get finite-
difference equation system

• Ti+1 + Ti-1 – 2Ti + h2a2Ti = 0

• Have N+1 nodes numbered from 0 to N
with boundary conditions at 0 and N

Ignore truncation error

16

General Boundary Conditions
• Must be able to handle three kinds

– Dirichlet – specify variables at boundary
– Neumann – specify boundary gradients
– Mixed or third kind – specify relationship

between value and gradient at boundary

• General format a dT/dx + bT = c (mixed)
– Fixed T: a = 0, b = 1, c = boundary T
– Gradient: b = 0, a = 1, c = value for dT/dx

• Use directional finite-difference equation
for boundary gradients, dT/dx

17

Example Continued

• Equation is Ti-1 + (–2 + h2a2)Ti + Ti+1= 0

• Specify boundary values TA and TB

– T0 = T(x=0) = TA and TN = T(x=L) = TB

• With specified boundary values
equations at i = 1 and i = N-1 become
– (–2 + h2a2)T1 + T2 = –TA

– TN-2 + (–2 + h2a2)TN-1 = –TB

• Resulting system of equations forms
tridiagonal matrix

18

Example Matrix Equations

B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1

• Finite-difference equations in matrix
form with = a2h2 have tridiagonal form
solved by Thomas Algorithm used with
cubic spline (see end slides)

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Analytical Solution Comparison
• Look at results for h = 0.1 (N = 10) with

TA = 0, TB = 1, a = 2 and L = 1
• Compare to exact solution below

– Exact gradients also used in comparison

)cos()sin(
)sin(

)cos(
axTax

aL

aLTT
T A

AB

)sin(

)cos(

0
0 aL

aLTT
ka

dx

dT
kq AB

x
x

)sin(

)cos(

aL

aLTTka

dx

dT
kq BA

Lx
Lx

Results of Finite-Difference Calculations

i xi Ti Exact Ti Error

0 0.0 0 0 0

1 0.1 0.21918 0.21849 0.00070

2 0.2 0.42960 0.42826 0.00134

3 0.3 0.62284 0.62097 0.00187

4 0.4 0.79115 0.78891 0.00224

5 0.5 0.92783 0.92541 0.00242

6 0.6 1.02739 1.02501 0.00238

7 0.7 1.08585 1.08375 0.00211

8 0.8 1.10088 1.09928 0.00160

9 0.9 1.07188 1.07099 0.00089

10 1.0 1 1 0

21

Error and Error Order
• Get overall measure of error (like norm

of a vector)
• Typically use maximum error (in

absolute value) or root-mean-squared
(RMS) error

• N = 10 has max = 2.42x10-3 and RMS =
1.83x10-3. For N = 100, max = 2.41x10-5

and RMS = 1.73x10-5

• Second-order error in solution

N

i
inumericalexact

N

i
iRMS

TT
NN 1

2

1

2)(
11

22

Boundary Gradients
• Use second-order derivative expressions

h

TTT
k

dx

dT
kq

xx 2

43 210
0

0

h

TTT
k

dx

dT
kq NNN

xx
N

N
2

43 21

x -qexact/k h -q/k Error

0 2.1995 .1 2.2357 .03618

0 2.1995 .01 2.1999 .00036

1 -.9153 .1 -.9332 .01786

1 -.9153 .01 -.9155 .00021

MATLAB Boundary-value ODEs

• MATLAB has two solvers bvp4c and
bvp5c for solving boundary-value ODEs
– bvp5c: finite difference code implements

four-stage Lobatto IIIa formula, a
collocation formula that provides a C1-
continuous solution that is fifth-order
accurate uniformly in [a,b]

– bvp5c solves algebraic equations directly;
bvp4c uses analytical condensation

– bvp4c handles unknown parameters
directly

23 24

Solve Tridiagonal Equations

B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1

• Finite-difference equations in matrix for
example problem with = a2h2

• Use Thomas Algorithm for Solution

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 5

25

Thomas Algorithm

N

N

N

N

NN

NN

D

D

D

D

D

x

x

x

x

x

BA

CB

BA

CBA

CBA

CB

1

2

1

0

1

2

1

0

11

33

222

111

00

0000

0000

0000

000

000

0000

• General set of tridiagonal equations

26

Thomas Algorithm II

N

N

N

NN

F

F

F

F

F

x

x

x

x

x

E

E

E

E

1

2

1

0

1

2

1

0

1

2

1

0

100000

10000

001000

00100

00010

00001

• Gauss elimination upper triangular form

Have to find Ei and Fi

27

Thomas Algorithm III
• Forward computations

– Initial: E0 = – C0 / B0 F0 = D0 / B0

– Apply equations below for i = 1,… N-1:

– At final point

1

1

1

iii

iii
i

iii

i
i EAB

FAD
F

EAB

C
E

1

1

NNN

NNN
NN EAB

FAD
Fx

• Back substitute: xi = Fi + Eixi+1

28

Result: h = .1, a = 2, T0 = 0, TN = 1

Input Forward
Calculations

Back
substitute

Spreadsheet Formulas

29

Formulas here solve only for interior points
when fixed boundary conditions are
specified

30

Other Boundary Conditions

• General condition a dT/dx + bT = c
– a = 1, b = 0 for Neumann (gradient given)

– a = 0, b = 1 for Dirichlet (value given)

– Write gradient using second order forward
(x = x0) or backward difference (x = xN)

– Combine with equation for first node in
from the boundary to eliminate term with
second node from boundary

– Result conforms to tridiagonal system

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

General Boundary Example

• Look at x = x0 boundary; results for x =
xN follow similar derivation

000
210

0000 2

43

0

cyb
h

yyy
ayb

dx

dy
a

xx

02
0

1
0

0
0

0 22

4

2

3
cy

h

a
y

h

a
y

h

a
b

h

a
yyy

2
0)2(0

210

• Add these
two equations
eliminating y2

01
0

0
0

0 2

)2(

2

2
cy

h

a
y

h

a
b

32

General Boundary Example II

• Equation just derived is seen to give
correct Dirichlet result for a0 = 0, b0 = 1

NN
N

N
N

N cy
h

a
y

h

a
b

 12

)2(

2

2

• Similar derivation at x = xN gives

01
0

0
0

0 2

)2(

2

2
cy

h

a
y

h

a
b

• Equations shown here will work for a = 0
or b = 0, but at least one must be nonzero

33

Nonlinear Problems

• Shoot-and-try requires no special
procedures for nonlinear problems

• For finite difference or finite elements,
solve a linearized equation
– Example is pendulum equation d2/dt2 =

(-g/l) sin (usually solved with sin)

– Taylor series: sin = sin 0 + [d(sin)/d]0
(– 0) = sin 0 + cos 0 (– 0)

– Replace sin by linear result to iterate

34

Nonlinear Example

• Start with d2/dt2 = (-g/l) sin
• Replace sin by linearized series

• Write in iterative form with (m+1) as new
iteration and use (m) in nonlinear terms

• d2(m+1)/dt2 = (-g/l) [sin (m) + cos (m)

((m+1) – (m))

• Define 2 = g/l and rearrange
d2(m+1)/dt2 + 2(m+1) cos (m) = –2 [sin (m) –
(m)cos (m)] = r

35

Nonlinear Example II

• Convert d2(m+1)/dt2 + 2(m+1) cos (m) =
r to (linear) finite-difference form in (m+1)

)()()(2

)1(2
2

)1()1(
1

)1(
1

sincos

2

m
i

m
i

m
ii

i
m

i

m
i

m
i

m
i

r

r
h

• Have tridiagonal system

 i
m

i
m

i
m

i rhh 2)1(
1

)1(22)1(
1 2

36

Nonlinear Example III

• Make initial guesses for (0)

– Linear profile (0)(t) = (0) + [(L) – (0)]t/T

• Find all nodal values for (1) using (0) to
compute the nonlinear terms

• Repeat the process until the differences
between iterations is good enough
– Compute residuals to test convergence

)1(2)1(
1

)1(22)1(
1 2

 m
i

m
i

m
i

m
ii rhhR

Numerical Solutions of Boundary-Value
Problems in ODEs

November 27, 2017

ME 501A Seminar in Engineering
Analysis Page 7

37

Summary

• Boundary value problems require
special treatment
– Shoot-and-try

– Finite differences or finite elements

• Shoot-and-try is usually better for
nonlinear problems and finite
differences are better for linear ones

• Finite elements are more applicable to
complex geometry 2D and 3D problems

